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1. Introduction 

Many parts of the world, particularly the Asian-
Pacific region, have experienced serious natural 
disasters associated with unusual climate events, 
resulted in loss of life, destruction of shelters and 
food reserves, disruption of food production, and 
health risks. Moreover, the agricultural, industrial, 
and economic productivities are heavily dependent 
on the variability of the weather and climate in this 
region. Recent climate fluctuations, particularly 
related to recent history breaking El-Nino have 
demonstrated to many decision makers in weather-
sensitive industries that climate variabilility has 
significant economic impacts. As a consequence, 
there have been increasing interests on the weather 
and climate forecasts and continuing efforts in 
developing long-range seasonal prediction system 
as well as those in short-range weather forecasts.  

Regarding to the seasonal prediction, as the 
regional climate system is apparently subjective to 
the global climate variability, recent activities in 
operational weather centers and universities rely on 
the predictions based on the global atmospheric 
general circulation models (AGCMs). With all its 
progression and successes, however, current models 
still have many predictability limitations, mostly 
due to the coarse horizontal resolution, and hence 
the uncertainties in the sub-grid scale 
parameterizations. In addition, uncertainties in the 
sea surface temperature forecast that is regarded as 
a most important in the interannual variability of the 
climate contaminate the forecast skill significantly.  

Based on the years of effort, we integrate the 
individual prediction system developed respectively 
into a unified prediction system. As will be 
discussed later, it contains the improved ENSO (El-
Nino and Southern Oscillation) and global sea 
surface temperature (SST) prediction system that is 
more accurate than the SST persistency method. 
Also, dynamical prediction outputs are transformed 
to the regional forecast with the help of statistical 
downscaling technique, which alleviates the 
inaccuracy of the dynamical model by relating 
model outputs to the observation data statistically. 
The system finally combines the dynamical model 
prediction with the statistical prediction, giving a 
more improved seasonal prediction skill score.   

This study describes the structure of the 
dynamical seasonal prediction system developed at 
Climate Environment System Research Center 
(CES) in Seoul National University and shows the 
prediction skill of the system.  

 
2. Seasonal Prediction System 

A 6-month lead seasonal prediction system 
established is made by utilizing the dynamical and 
statistical methods. Figure 1 shows the schematic 
diagram of the prediction system. The dynamical 
prediction system consists of SNU/AGCM (Seoul 
National University/ Atmospheric General 
Circulation Model; Kim et al. 1998; Lee et al. 2001) 
with a horizontal spectral truncation at T63 and 20 
vertical levels, the global SST prediction system, 
and a statistical downscaling scheme. The global 
SST prediction system consists of the intermediate 
coupled ocean atmosphere model over the tropical 
Pacific between 20S and 20N (Kang and Kug 2000) 
and the statistical SST prediction system over the 
globe other than the tropical Pacific region. The 
statistical model utilizes the coupled pattern 
projection method, by identifying the SST patterns 
related to each grid point SST with some lead time. 
The local SST is then predicted by projecting the 
SST patterns identified to the SST fields of the lead 
times. The monthly mean SSTs over the globe are 
predicted for 7 months from the starting month, 
which is one month before the forecast target 
season. The initial condition is taken from the 
National Centers for Environmental Prediction/the 
National Center for Atmospheric Research 
(NCEP/NCAR) reanalysis data. It includes not only 
the atmospheric variables but land surface variables, 
such as soil moisture, snow depth and soil 
temperature those are supposed to be pretty 
important for the season variability of the 
atmosphere.  

The dynamical prediction utilizes 10 member 
ensemble integrations of the SNU/AGCM driven by 
the forecasted sea surface temperature forcing as a 
boundary condition. In general, the dynamical 
model shows a poor predictability skill for the 
seasonal forecast. To overcome this problem, a 
statistical inversion or downscaling process is 
applied to the dynamical model outputs. The 



downscaling method is developed based on the 
pattern projection method by relating the observed 
station data (temperature and precipitation) to the 
model predicted circulation statistics.  

To identify the model patterns associated with 
local climate, we need a long historical hindcast 
prediction data. In other words, 20 year prediction 
hindcast for 1979-1998 has been performed to 
develop the statistical downscaling method. The 
procedure of the 20 year hindcast adapted is the 
same as that of CLIVAR/Seasonal Model 
Intercomparison Project (SMIP2) The SMIP2 uses 
the observed SST instead of the predicted SST. 
Therefore, the SMIP2 does not provide the actual 
predictability but the potential predictability of the 
present system.  

It is not insufficient for 20-year hindcast data to 
apply conventional training-forecast method in 
statistical downscaling. Thus, 1-year-out cross 
validation scheme is adapted. In this method, 
training period is for the rest of year (19 years) 
except forecast target year and 20-year regional 
forecasts are produced. 

 
Figure 1. Schematic diagram of seasonal prediction 
system.  
 

Figure 2 illustrates the potential predictability 
skill for the monthly rainfall in summertime before 
and after applying the statistical downscaling. For 
calculating predictability score, temporal 
correlations are obtained between actual 
observations and prediction outputs in each grid 
box for the 20 years hindcasts (1979-1998). In Fig 
2a, it is mentioned that without the downscaling 
there are some predictability signal only in the 

tropical region and other oceanic region but no 
predictability skill in the extratropics. However, Fig. 
2b shows pretty improved predictability with above 
0.4~0.5 correlations over most of the entire regions. 
It implies the importance of statistical downscaling 
which seems to eliminate the systematic biases in 
the prediction system.  

Figure 2. Predictability maps for the monthly 
precipitation in summertime (a) without statistical 
downscaling and (b) with statistical downscaling. 
Darker shaded areas indicate the regions showing 
higher predictability. For the predictability score, 
Correlations are calculated between the forecasted 
and the observed for the 20 years (1979-1998) in 
each grid box.  
 

The seasonal forecasts can be presented by either 
a deterministic or a probabilistic way. Probabilistic 
forecast can be more useful to get the forecast 
uncertainty as well as the mean expected value by 
showing a probability distribution of expected 
values, and, in addition, it can be further utilized in 
the economic value assessments. Figure 3 and Fig. 
4 are one set of examples for the deterministic and 
probabilistic forecasts applied to the Korean mean 
January temperature in 2002, respectively. In the
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Figure 3. Two-month lead statistical prediction for 
the January surface temperature anomaly of Korea 
for 1981-2002 periods. Solid line indicates the 
observation and dotted ensemble mean prediction. 
Dots indicate the individual realizations. 

 
January temperature in 2002, respectively. In the 
probabilistic forecasts, posterior probability can be 
obtained by Bayes’ theorem (Katz and Murphy 
1997), and expressed as  
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where Pf,x represents the probability distribution of 
observed climatolgy, Px does that of the forecasted 
climatology, and Pf for the probability distribution 
of actual forecast for a specific year. Posterior 
probability (Px,f) indicates the adjusted probability 
distribution by using historical hindcast 
performances of the system. 

 

 
Figure 4. Probabilistic forecast for the Koran 
surface temperature in January 2002. Bar graph 
indicates the climatological distribution (1951-
2000) and dotted light line indicates the normalized 
distribution derived from climatolgoical distribution 
(Pf,x). Dotted dark line indicates prior probability of 
the forecast system (Px) obtained from 20 year 
predictions, and solid light for 2002 forecast (Pf). 
Posterior probability (Px,f) is represented in solid 
dark line. 

 
3. Conclusions 

In this study, the newly developed 6-month lead 
seasonal prediction system was introduced. The 
seasonal prediction system has been developed by 
combing several systems individually developed for 
past several years at the SNU/CES: ENSO and 
global SST prediction systems, dynamical AGCM 
prediction system, statistical downscaling method, 
the statistical prediction systems, and super-
ensemble technique. Not only dynamic ensemble 
predictions with massive supercomputing resources, 
but various statistical techniques and procedures are 
essential components to produce a reasonable 
predictability skill. The present prediction system 
produces not only the deterministic forecast but also 
the probability forecast.  
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